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In this paper, we propose a novel reduced-reference quality assessment metric for image super-
resolution (RRIQA-SR) based on the low-resolution (LR) image information. With the pixel correspon-
dence, we predict the perceptual similarity between image patches of LR and SR images by two compo-
nents: the energy change in low-frequency regions, which can be used to capture the global distortion in
SR images, and texture variation in high-frequency regions, which can be used to capture the local dis-
tortion in SR images. The overall quality of SR images is estimated by perceptual similarity calculated
by energy change and texture variation between local image patches of LR and HR images.
Experimental results demonstrate that the proposed method can obtain better performance of quality
prediction for SR images than other existing ones, even including some full-reference (FR) metrics.

� 2019 Elsevier Inc. All rights reserved.
1. Introduction

Image super-resolution (SR) technique provides an effective
solution for the problem of image resolution limitation from some
specific imaging sensors such as surveillance cameras, mobile
devices, etc. With image super-resolution, the low-resolution (LR)
images from these devices can be better displayed and utilized in
the common high-resolution (HR) displays and thus provide good
visual experiences for users. In many multimedia processing sys-
tems, image super-resolution is highly desired to obtain SR images
from LR images for some specific tasks such as detection, recogni-
tion, etc. During the past decades, there have been numerous
image super-resolution algorithms proposed for various multime-
dia processing applications [1–15], and there have been various
applications for image super-resolution including medical image
processing, infrared imaging, face/iris recognition, image editing,
virtual reality (VR), etc.

Early methods use shift and aliasing properties of Fourier trans-
form for image super-resolution. These methods are efficient, but
they cannot model the complicated image degradation and image
priors. To overcome the drawbacks of the methods in frequency
domain, various spatial image super-resolution methods have been
designed. One simple spatial image super-resolution method is
image interpolation, which tries to obtain HR images from LR
images by pixel interpolation [5,36]. The problem with image
interpolation is that there are serious aliasing artifacts and blurring
distortions along edges and high-frequency regions due to the
pixel interpolation operation.

To overcome these problems, many advanced image super-
resolution algorithms have been proposed, including
reconstruction-based methods, learning-based methods, etc. [1].
Reconstruction-based image super-resolution methods generate
HR images by a regularized cost function with certain prior knowl-
edge [6,37,11], while the example learning-based method recon-
structs HR images by learning the mapping function between
image patches from LR images to HR images. The exemplar image
patches can be extracted from the input image, the external data-
bases, or combined sources [8].

For these existing image super-resolution studies introduced
above, the performance of image super-resolution algorithms is
mainly validated by small-scale subjective tests. The problem with
subjective tests is that they are time-consuming and require sub-
jects involved in the experiments, and thus they cannot be used
in practical systems. Currently, much less has been done to assess
the visual quality of HR images objectively. Existing visual quality
assessment metrics such as peak signal-to-noise-ratio (PSNR),
structural similarity (SSIM) [18] and others cannot be used in
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super-resolution applications, since they can be used only in the
cases where the sizes of the reference and distorted images are
the same. Recently, there are only a few objective image quality
assessment (IQA) studies investigating the visual quality assess-
ment of HR images [20]. However, the study mainly focuses on
quality assessment for interpolated natural images [20]. The per-
formance of existing IQA metrics is low in visual quality assess-
ment of image super-resolution, as demonstrated by the
experimental results in Section 4. Thus, it is highly desired to
design the effective objective quality assessment metric for image
super-resolution for various practical systems of image super-
resolution.

In this study, we propose a novel reduced-reference (RR) quality
metric for image super-resolution (RRIQA-SR). For image super-
resolution, the global structural information in the generated HR
image should be generated based upon that in the LR image. For
the generated structural information in the HR image, it can be
divided into two parts: low-frequency and high-frequency regions.
The visual quality of the HR image can be estimated by visual dis-
tortion in these two parts. To measure the visual quality in HR
images, the energy and texture features are extracted for low-
frequency and high-frequency regions of image patches in LR and
HR images, respectively. The feature difference from energy and
texture are used to estimate the perceptual similarity between
LR and HR images, which is further adopted to predict the overall
quality of HR images. Here, the used energy change and texture
variation can capture the global and local distortions in HR images,
respectively. Experimental results show that the proposed RRIQA-
SR can obtain better performance in quality prediction of HR
images than other existing ones. Please note that the initial work
was published in the study [59].

The remaining of this paper is organized as follows. Section 2
introduces the related work of image super-resolution and visual
quality assessment in the literature. Section 3 describes the pro-
posed method in detail. In Section 4, we provide the experimental
results from different quality metrics to demonstrate the perfor-
mance of the proposed method. The final section concludes the
paper.
2. Related work

2.1. Image super-resolution

Considering the number of available LR images, image super-
resolution algorithms can be classified into two categories:
multi-frame super-resolution and single-frame super-resolution
approaches [9]. For the multi-frame super-resolution methods, it
can be further divided into two groups: the static super-
resolution approach which only uses the corresponding LR frames
to generate the current HR frame [33,34], while the dynamic
super-resolution approach which use previous reconstructed HR
frames to obtain the current HR frame [35].

For single-image super-resolution methods, there have been
many different approaches proposed previously. Traditional inter-
polation based image super-resolution methods try to reconstruct
the HR image by a base function, including bilinear, bicubic and
nearest neighbor algorithms [5,36,39]. In the study [39], Li et al.
proposed an edge-directed interpolation algorithm for natural
images based on bilinear interpolation and covariance-based adap-
tive interpolation. An edge-guided image interpolation method
was designed by Zhang et al. based on directional filtering and data
fusion [40]. Recently, Wei et al. adopted contrast information to
design image interpolation algorithm [36]. As introduced previ-
ously, the image interpolation is generally simple and efficient,
but they suffer from artifacts/distortions easily in high-frequency
regions.

In the past years, there were many reconstruction-based image
super-resolution methods proposed by prior information to try to
obtain better performance than traditional image interpolation
algorithms. In the study [6], the authors used the statistical edge
features to reconstruct HR images by resolving a constrained opti-
mization problem. Sun et al. adopted gradient profile prior describ-
ing the sharpness of the image gradient to reconstruct the HR
images [7]. In the study [37], the self-similarities of natural images
were used as the prior for image super-resolution. Recently, spar-
sity prior has been widely used as prior information in image
super-resolution [10,11,42], etc.. In these reconstruction-based
image super-resolution methods, the used prior information is
extracted based on some properties of natural images, and thus
some blurring distortion or aliasing artifacts can be suppressed in
HR images. However, the prior information used in the
reconstruction-based methods would lead to distorted fine image
structures if the up-scaling factor is large.

Recently, a popular type of image super-resolution methods is
the example learning-based method, which reconstructs HR
images by learning the mapping function between image patches
from LR images to HR images [14,38,41,15]. In the study [12], sup-
port vector regression (SVR) was used to learn the mapping func-
tion in DCT domain between LR and HR images. Yang et al. used
sparse dictionary representation to learn the mapping function
between LR and HR images [14]. Following this work, there have
been various sparse dictionary representation methods proposed
for image super-resolution [9,13]. Zhang et al. used clustering
and collaborative representation to propose a image super-
resolution algorithm by learning the statistical priors [54]. The
deep learning technique was also used in a recent study [15], etc.
to learn the mapping function between LR and HR images for
image super-resolution.

2.2. Image quality assessment

There are two types of visual quality assessment methods: sub-
jective quality assessment and objective quality assessment. Since
the human visual system (HVS) is the final receiver for visual con-
tent, subjective quality assessment is an accurate and reliable
method for image quality assessment. During subjective experi-
ments, a number of observers have to be invited to participate in
the test to provide a rating score for each image. The average score
overall all subjects, considered as mean opinion score (MOS), is
used to represent the subjective score for each image. Although
subjective quality assessment can obtain accurate and robust qual-
ity prediction for visual content, it is expensive, time-consuming,
and cannot be embedded into super-resolution algorithms for opti-
mization purpose [17,43].

To perform visual quality assessment in practical applications,
there have been various objective quality metrics proposed to esti-
mate visual quality of visual content consistent with human per-
ception. According to the availability of the reference image,
there are three types of image quality assessment (IQA) metrics
[17,43]: full-reference (FR) metrics [18,29,19,44,55,57], RR metrics
[47–49,56], and no-reference (NR) metrics [45,51,58]. The differ-
ence between these three types of IQA metrics is as follows: the
FR metric requires the complete original image for visual quality
prediction of the distorted image; the RR metric requires part
information of the original image for visual quality estimation of
the distorted image; the NR metric does not require any informa-
tion of the original image for visual quality prediction of the dis-
torted image. Generally, FR metrics can predict more accurate
visual quality of distorted images compared with RR and NR met-
rics, since there is more available reference information.



Fig. 1. LR and SR image samples: the SR image is obtained from the study [24]. The
energy change and texture variation are computed based on the differences
between corresponding image patches in LR and SR images.
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During the past decades, there has been much progress in the
area of objective IQA [16,17,43]. Traditional signal fidelity metrics
such as PSNR, mean absolute error (MAE), mean square error
(MSE), etc. predict visual quality of images by simply comparing
the reference and distorted images without taking the visual con-
tent into account. These methods are simple and efficient, but they
cannot estimate the visual quality of images accurately due to the
lack of visual perception factors [16,17]. To better predict the
visual quality of visual content, there have been various perceptual
IQA metrics proposed during the past decade [17,43,47].

In the study [18], Wang et al. proposed the structural similarity
metric (SSIM) by considering the perceptual characteristics of
visual structure in images. SSIM has received much attention and
been widely used in various multimedia systems in the past years.
Later, Sheikh et al. designed a IQA metric called visual information
fidelity (VIF) based on random field from the subband [29]. Larson
et al. used visual masking and local statistics of spatial frequency
components to devise a perceptual IQA metric of most apparent
distortion [30]. In the study [19], the authors adopted the concept
of internal generative mechanism (IGM) for IQA. There are many
other IQA metrics proposed based on gradient similarity [44], con-
trast features [46], free energy [50], and so on.

As introduced previously, most existing perceptual IQA metrics
cannot be used for image super-resolution, since they need the
sizes of the reference and distorted images to be the same. For
image super-resolution, the sizes of original LR and generated HR
images are different. In the past, there were several studies inves-
tigating the visual quality assessment of image super-resolution
subjectively and objectively [21,20,8]. Reibman et al. conducted
subjective tests to evaluate the visual quality of super-resolution
enhanced images [21]. That study also demonstrates that even FR
metrics such as SSIM cannot always capture visual quality of HR
images [21]. The authors in [20] proposed an objective IQA metric
based on natural scene statistics (NSS). However, that NSS based
method is mainly designed for interpolated natural images [20].

Recently, Yang et al. conducted a subjective study for quality
evaluation of single-frame super-resolution by using some state-
of-the-art single-frame super-resolution methods [8]. The full-
reference IQA metrics such as PSNR, SSIM, etc. are used to evaluate
the visual quality of HR images. However, in most practical appli-
cations, the only available information is the LR image and there is
no ground truth HR image. Thus, it is highly desirable to design IQA
metrics for HR images with only available LR images or without
any reference information.

2.3. Contributions of our work

In this study, we investigate the objective visual quality assess-
ment for single-frame super-resolution and propose a RRIQA-SR
metric; due to the use of only LR image information, it is an RR type
of IQA because the LR image to start with can be regarded as partial
reference to the generated SR image. In fact, RR IQA is the most
meaningful and practical IQA for super-resolution construction.
The proposed RRIQA-SR is designed based on the perceptual simi-
larity between LR and HR images. The MRF is first used to model
pixel correspondence between LR and HR images. Then the energy
and texture features are extracted in the low-frequency and high-
frequency regions in image patches of LR and HR images by DCT
coefficients. The perceptual similarity between LR and HR images
is calculated by the feature difference between image patches of
LR and HR images. The main contributions of this study include
the following aspects.

� To measure the overall visual degradation in HR images, we cal-
culate the energy change from energy differences between
image patches of LR and HR. The DC coefficients are used to
extract the energy features of low-frequency regions in image
patches. The designed energy change can capture the global dis-
tortion in HR images.

� To measure the detailed visual distortion in high-frequency
regions of HR images, we compute the texture variation from
the texture feature differences between image patches of LR
and HR images. The AC coefficients are used to obtain the tex-
ture features of high-frequency regions in image patches. The
designed texture variation can capture the local distortion in
HR images.

3. Proposed method

In this section, we introduce the proposed method in detail. We
analyze the procedure of image super-resolution and provide the
framework of the proposed method in the first subsection. The pro-
cess of pixel correspondence is then described. Following that, we
give the computation of energy change and texture variation for
visual quality prediction of image super-resolution. The visual
quality prediction model is provided in the final subsection.

3.1. Overview

During image super-resolution construction, the overall visual
information of the generated SR image should be highly similar
with that of the original LR image. For the reconstructed SR images,
the visual distortion brought into during image super-resolution
operation is mainly caused from the following two aspects: one
is the overall energy change of low-frequency regions from a LR
image to its generated HR image, while the other is the visual arti-
facts in high-frequency regions such as edges, corners, etc. These
two aspects can be also considered as global and local distortion
in SR images.

In Fig. 1, we provide one example to demonstrate the visual dis-
tortion from these two aspects. From this figure, we can see that
the SR image is smoother compared with the LR image, which
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can be reflected by the energy change of low-frequency regions in
the SR image. It is also the global distortion in the SR image. Fur-
thermore, from the small patch in Fig. 1(b), we can observe that
there is much visual distortion in high-frequency regions along
the eye, nose, etc. Compared with the LR image, we can use the tex-
ture variation to represent the local information change in high-
frequency regions, which can be also considered as the local distor-
tion. Thus, we propose to measure the visual distortion of HR
images from these two aspects: the global visual information
degradation from energy change, and the local visual distortion
from texture variation.

The framework of the proposed method is shown as Fig. 2. From
this figure, we can see that the proposed method first obtains the
pixel correspondence between LR and HR images. Then the energy
change and texture variation are estimated by the feature differ-
ence between LR and HR images. The final RRIQA-SR score is pre-
dicted by considering both the energy change and texture
variation in HR images. We will explain the framework of the pro-
posed method step by step as follows.

3.2. Pixel correspondence

Since the size of the HR image becomes larger due to generated
image pixels from the LR image, the pixel correspondence between
LR and HR images is missing. In general, we do not know the algo-
rithm for super-resolution construction. The difference between
the LR and HR images from image super-resolution is mainly
caused by structure change due to generated image pixels in HR
images. Assume the reference and distorted images aligned well,
traditional perceptual metrics such as SSIM mainly calculate the
pixel-to-pixel difference for visual quality assessment. The classi-
cal distortions such as Gaussian noise, compression artifact, and
contrast change can be regarded as the intensity changes, which
can be captured by the direct subtraction of the reference and dis-
torted images. However, it is impossible to predict the visual qual-
ity of HR image from image super-resolution by direct subtraction
of LR and HR images, since their resolutions are different. Thus, we
have to obtain the pixel correspondence first before the similarity
calculation. In this study, the pixel correspondence between LR and
HR images is modeled by the Markov Random Field (MRF) [31] in
energy minimization framework. The SIFT descriptors [32] has
been proved to be robust for pixel matching across different
scenes. Here, we use the SIFT descriptor as the features for pixel
correspondence prediction.

3.3. Energy change and texture variation

After pixel correspondence, we calculate the energy change and
texture variation between image patches in LR and HR images.
Given a LR image ILR and its corresponding HR image IHR, their sizes
Fig. 2. The framework of t
are denoted as MLR � NLR and MHR � NHR. Thus, the resizing factor a
can be calculated as: a ¼ MHR=MLR. The computation of energy
change and texture variation between LR and HR images are given
as follows.

Fk ILR; IHRð Þ ¼
X
b;b0ð Þ

f k b; b0� � ð1Þ

where k 2 1;2f g represents the energy or texture feature; f k
denotes the function to compute energy change or texture varia-
tion. b and b0 are the corresponding image patches centering at
the pixel pair p and p0 in LR and HR images, respectively. Please note
that the size of image patch b0 is a times of that of b, as shown in the
small patches denoted by white squares in Fig. 1. Here, for each
image pixel p in the LR image, we extract one image patch pair
based on pixel correspondence for the energy change and texture
variation calculation in Eq. (1). The overall perceptual similarity
between the LR and HR images is represented by the sum of simi-
larities of all patch pairs in LR and HR images.

During the past decades, Discrete Cosine Transform (DCT) has
been widely used for feature representation in various image pro-
cessing applications [22,23]. It is well known that the DC coeffi-
cient includes most of the image energy and represents the
energy of the image, while AC coefficients represent the frequency
components in images [23]. Here, we use the DC coefficient to rep-
resent the energy feature of each image patch, while the texture
feature is extracted from AC coefficients.

3.3.1. Energy change estimation
Given any image patch pair b and b0 from the LR and HR images,

we first calculate their DC coefficients by DCT as D and D0 for image
patches b and b0, respectively. The average energy change between
this image patch pair can be computed as:

f e b; b0� � ¼ 2mDmD0 þ C1

m2
D þm2

D0 þ C1
ð2Þ

where C1 is a constant; mD and mD0 represent the average energy
values in image patches b and b0, respectively, and they are com-
puted as:

mD ¼ D

N2 ð3Þ

mD0 ¼ D0

N02 ð4Þ

where N � N and N0 � N0 denote the sizes of image patches i and j,
respectively.

In Fig. 3, we provide the similarity map from energy change in
the fourth column. From this map, we can see that the energy
change capture the information degradation globally, which
he proposed method.



Fig. 3. The visual samples of similarity maps from different components in the proposed method. First column: the ground truth image; second column: SR image generated
from the LR image; third column: similarity map from texture variation; fourth column: similarity map from energy change; fifth column: overall similarity map from the
proposed method. Please note that the contrast of the similarity maps is enlarged for better visual experiences.
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demonstrates that it can represent the visual distortion of low-
frequency regions in SR images.
3.3.2. Texture variation estimation
From Eq. (2), we can calculate the average energy change

between image patch pair in LR and HR images. For the texture
variation between image patch pairs in LR and HR images, we
use AC coefficients to represent the texture feature. For any image
patch b with size Nb � Nb in the LR image, it has N2

b � 1 AC coeffi-

cients: A ¼ A1;A2;A3; . . . ;AN2
b�1

n o
. For any image patch Nb0 in the

HR image, there are N2
b0 � 1 AC coefficients:

A0 ¼ A0
1;A

0
2;A

0
3; . . . ;A

0
N2
b0 �1

n o
. The texture variation between image

patches in LR and HR images can be calculated by the differences
of the mean and standard deviation values of AC coefficients. The
texture variation by patch differences between image patches b
and b0 can be computed as follows.

f t b; b0� � ¼ 2mAmA0 þ C2ð Þ 2dAdA0 þ C3ð Þ
m2

A þm2
A0 þ C2

� �
d2
A þ d2

A0 þ C3

� � ð5Þ

where mA and mA0 are the mean values of the vectors A and A0,
respectively; dA and dA0 denote the standard deviation of the vectors
A and A0, respectively; C2 and C3 are constant values. The mean and
standard deviation values are computed as follows.

mA ¼
PN2

b�1
p¼1 Ap

N2
b � 1

ð6Þ

mA0 ¼
PN2

b0 �1
p¼1 A0

p

N2
b0 � 1

ð7Þ
dA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N2

b � 1

XN2
b�1

p¼1
Ap �mA
� �2s

ð8Þ

dA0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N2

b0 � 1

XN2
b0 �1

p¼1
A0
p �mA0

� �2
s

ð9Þ

In Fig. 3, we provide the similarity map from texture variation
in the third column. From this figure, we can see that the local dis-
tortion is well captured by texture variation, especially for the
regions with complex texture (high-frequency regions). Thus, we
can use the energy change and texture variation of the HR image
to estimate the visual distortion of SR images globally and locally
according to Eqs. (2) and (5), respectively. In the next subsection,
we will introduce how to predict the visual quality of HR images
based on these two components.
3.4. Overall quality prediction

As indicated previously, the energy change in HR images would
cause the global visual information degradation to the image,
while the texture variation would bring into local distortion to
high-frequency regions. Thus, we predict the visual quality of HR
images by combining these two components as follows.

Q ¼ Fe � Ft ð10Þ
where Fe and Ft represent the pooling values of estimated energy
change and texture variation from all patch pairs between LR and
HR images.

In Fig. 3, the overall similarity map from energy change and tex-
ture variation is given in the last column. From these similarity
maps, we can see that the overall similarity map is very similar
with the similarity map from texture variation, which demonstrate
that the energy change from different local patches are almost sim-
ilar in SR images. More analysis is provided in the experiment
section.
4. Experimental results

In this section, we provide the experimental results for the per-
formance evaluation of the proposed RRIQA-SR. First, we give the
evaluation methodology of the comparison experiments, including
the used databases and evaluation methods. Then we analyze the
influence of each component in the proposed method for quality
evaluation of SR images. Following this, the existing IQA metrics
are used to conduct the comparison experiments for the perfor-
mance evaluation of the proposed method.

4.1. Evaluation methodology

We use the database with subjective scores in [8] to do the
comparison experiment. Although the ground truth HR images
are available in [8], we have only used the generated LR images
from them, not these ground truth images, for the proposed
RRIQA-SR; these ground truth HR images are also used for perfor-
mance evaluation for the existing full-references IQA metrics
under comparison. These ground truth HR images covering a wide
range of high-frequency levels are selected from Berkeley segmen-
tation dataset [25], where the images are with diverse content
obtained in a professional photographic style. The ground truth
images are first used to generate LR images for image super-
resolution.

There are ten ground truth images used in the subjective test.
For each ground truth image, nine LR images are created under
three scaling factors and three Gaussian kernel widths. The SR
images are generated from LR images by six existing single frame
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super-resolution algorithms. Thus, there are 540 SR images in total
in this database. Thirty participants were involved in the subjective
test, evaluating the 540 SR images without knowing the ground
truth images or image super-resolution methods. During the sub-
jective test, SR images were displayed randomly to avoid the bias
to favor specific methods and participants were asked to give a
perceptual score between 0 and 10 for each SR image [8]. The sub-
jective perceptual quality of SR images is represented by the MOS,
which is the average of the subjective scores over 30 participants.

The performance of the proposed method can be evaluated by
the correlation between subjective and objective scores. In this
study, we use three common methods to calculate the correlation
between the subjective and objective scores: Pearson linear corre-
lation coefficient (PLCC), Spearman rank-order correlation coeffi-
cient (SRCC) and Kendall rank correlation coefficient (KRCC).
PLCC is computed as the correlation between subjective and objec-
tive scores with a nonlinear mapping. Given the ith image in the
database with size N, its subjective and objective scores are si
and oi, respectively. We use a nonlinear function to oi as follows
[52]:

o0i ¼ a1
1
2
� 1
1þ exp a2 oi � a3ð Þð Þ

� �
þ a4oi þ a5 ð11Þ

where a1 to a5 are parameters found numerically with a nonlinear
regression to maximize the correlations between subjective and
objective scores. PLCC can be estimated as:

PLCC ¼
P

i o
0
i � o0

� �
si � sð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i o
0
i � o0

� �P
i si � sð Þ

q ð12Þ

where o0 is the mean value of o0
i; s is the mean value of si.

SRCC and KRCC can be computed as follows:

SRCC ¼ 1� 6
PN

i¼1e
2
i

N N2 � 1
� � ð13Þ

where ei is the difference between the ith image’s ranks in subjec-
tive and objective results.

KRCC ¼ Nc � Nd
1
2N N � 1ð Þ ð14Þ

where Nc and Nd are the numbers of concordant and discordant
pairs in the dataset, respectively.

PLCC, SRCC and KRCC can be computed as Eqs. (12)–(14). PLCC
can be used to evaluate the quality prediction accuracy, while SRCC
an KRCC can be used to measure the monotonicity of quality pre-
diction [53]. Generally, a better IQA metric can obtain higher PLCC,
KRCC and SRCC values.

4.2. Experiment 1: influence of each component in the proposed
method

From Eq. (10), we can see that there are two components in the
proposed method: the energy change Fe, and the texture variation
Ft . Here, we first conduct the comparison experiment to evaluate
the influence of these two components. In this subsection, we
use energy change, texture variation, and both of them to compute
Table 1
Performance evaluation of the proposed method on two components.

Components Energy Change Texture Variation Proposed

PLCC 0.5803 0.6880 0.8052
KRCC 0.4092 0.4996 0.5885
SRCC 0.6001 0.6958 0.8035
the objective scores of HR images. Then the objective scores from
these three methods are used to be compared with subjective
scores. Experimental results of PLCC, KRCC and SRCC are listed in
Table 1.

From Table 1, we can see that the quality evaluation results
from the component texture variation Ft can obtain higher correla-
tion with subjective data than those from the component energy
change Fe. This demonstrates that the texture variation would
influence the overall visual quality of HR images more than the
energy change. This is reasonable, since the human visual system
is always much sensitive to high-frequency regions. And thus,
the visual distortion in high-frequency regions such as edges is
more obvious than the overall information degradation in HR
images. As shown in Table 1, the proposed method by combining
these two components can obtain much better performance than
each component energy change or texture variation.

Here, we also provide some visual samples of similarity maps in
Fig. 4. In this figure, we provide the similarity maps from texture
variation, energy change and the proposed method including both
these two components. From the first row of this figure, we can see
that the similarity map from texture variation mainly capture the
visual distortion from the texture changes in regions, especially
the regions with complex texture. For the energy change compo-
nent, its similarity map mainly represents the overall information
degradation in SR images. By comparing the visual samples from
the first and second rows, we can see that the visual distortion in
similarity map from texture variation in the second row is less than
that in the first row. This can be also observed from the SR images
in the first and second rows. By comparing the SR images in the
first and second rows, we can see that the visual distortion in the
first row is obviously larger than that in the second row, especially
for the high-frequency regions. Thus, the texture variation captures
the local visual distortion in high-frequency regions of SR images
well.

From Fig. 4, we can also find that the overall similarity map is
similar with that from texture variation for each SR image. This
demonstrates that the energy change of different local patches in
SR images are almost the same. This can be confirmed by the sim-
ilarity maps from energy change, which show that energy change
of most regions are the same. Thus, the defined energy change of
the proposed method can be used for capturing the visual distor-
tion of low-frequency regions, which is a measure of global visual
distortion in the SR image. In contrast, the texture variation of the
proposed method can be used to represent the visual distortion of
high-frequency regions, which is a measure of local visual distor-
tion in the SR image.

4.3. Experiment 2: comparison with existing related metrics

To further demonstrate the performance of the proposed
method, we have conducted the comparison experiments by using
some existing IQA metrics. Here, we use the NSS-SR metric [20]
designed specifically for image super-resolution in the comparison
experiments. Please note that metric also use the LR images as the
reference information and thus it is also a RR metrics for image
super-resolution. The following popular full reference quality met-
rics are also used in performance evaluation due to the available
ground truth information in the database: PSNR, SSIM [18],
multi-scale SSIM (MSSSIM) [26], noise quality measure (NQM)
[28], visual information fidelity (VIF) [29], and the most apparent
distortion (MAD) [30]. We obtained the available source code of
these existing studies from the corresponding authors. Experimen-
tal results of PLCC, SRCC and KRCC are shown in Table 2.

From Table 2, we can see that SSIM can obtain better perfor-
mance than PSNR, similar with visual quality for general images
[18]. This demonstrates that perceptual consideration of structure



Fig. 4. The visual samples of similarity maps from two components in the proposed method. First column: the ground truth images; second column: SR images generated
from the corresponding LR images; third column: similarity maps from texture variation; fourth column: similarity maps from energy variation; fifth column: overall
similarity maps from the proposed method. Please note that the contrast of the similarity maps is enlarged for better visual experiences.

Table 2
Performance evaluation of the proposed method.

PSNR SSIM MSSSIM NQM VIF MAD NSS-SR Proposed

PLCC 0.5145 0.6702 0.7504 0.7940 0.5351 0.7924 0.1614 0.8053
KRCC 0.3296 0.4502 0.5325 0.5703 0.2786 0.5523 0.0917 0.5885
SRCC 0.4760 0.6203 0.7096 0.7632 0.5226 0.7363 0.1343 0.8035
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information is useful in quality prediction of image super-
resolution. Compared with SSIM and PSNR, MSSSIM can obtain bet-
ter performance in quality prediction of HR images. The reason is
that MSSSIM uses more high-frequency information through the
multi-scale implementation for quality predication. As demon-
strated previously, human perception is more sensitive to the
visual distortion in high-frequency regions than that in low-
frequency regions. NQM and MAD can obtain better performance
in quality prediction of HR images than VIF and MSSIM. In both
NQM and MAD, the contrast sensitivity and contrast masking are
used to model the human visual perception in different frequen-
cies. Thus, visual distortion in high-frequency regions of HR images



Fig. 5. The ground truth image (a) and SR images. (b) MOS: 1.8462, RRIQA-SR:0.4397, MSSSIM: 0.8414, NQM: 17.6, PSNR: 19.3077; (c) MOS: 2.0769, RRIQA-SR: 0.4831,
MSSSIM: 0.8737, NQM: 22.3425, PSNR: 19.9234; (d) MOS: 2.1538, RRIQA-SR:0.4853, MSSSIM: 0.8631, NQM: 18.7231, PSNR: 19.7341.

Fig. 6. The ground truth image (a) and SR images. (b) MOS: 0.889, RRIQA-SR:0.2690, MSSSIM: 0.8657, NQM: 17.15, PSNR: 21.18; (c) MOS: 1, RRIQA-SR: 0.2764, MSSSIM:
0.8660, NQM: 17.1, PSNR: 21.1833; (d) MOS: 1.2222, RRIQA-SR:0.3596, MSSSIM: 0.8488, NQM: 15.4881, PSNR: 20.4188.
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can be well measured by NQM and MAD. From Table 2, we can see
that NSS-SR obtains the lowest performance among the compared
quality metrics. Although NSS-SR is designed for image super-
resolution, the NSS models used in that metric are built more
specifically for image interpolation [20]. The used SR images are
created by using various image super-resolution algorithms rather
than image interpolation [8]. Thus, the NSS-SR cannot work well in
this database. Compared with other existing studies, we can see
that the proposed RRIQA-SR can get higher PLCC, KRCC, and SRCC
values than other compared metrics. This demonstrates that the
proposed method can obtain better performance in visual quality
prediction for image super-resolution than other metrics, even
for FR metrics. The reason is that the proposed method can mea-
sure the visual distortion of low-frequency region and high-
frequency region by energy change and texture variation,
respectively.

In Fig. 5, we provide some SR image samples with subjective
and objective scores calculated from different IQA metrics. From
this figure, we can see that all used quality metrics can predict
the consistent quality of SR images 1 and 2 with subjective data.
However, for SR image 3 with better quality than SR image 2, the
metrics of MSSSIM, NQM and PSNR cannot predict the visual qual-
ity accurately. In contrast, the proposed RRIQA-SR can predict the
visual quality of all these images consistently with the subjective
data. Fig. 6 also provides some visual samples with subjective
and objective scores from different metrics. From this figure, we
can also see that the proposed method can predict the visual qual-
ity of HR images more consistently than other existing metrics.

5. Conclusion

In this paper, a novel RRIQA-SR has been built for image super-
resolution, since reduced-reference IQA is the most meaningful
and practical IQA for this application. MRF model is first used to
estimate pixel correspondence between LR and HR images. Then
the energy change and texture variation from image patch pairs
between LR and HR images are calculated to predict visual distor-
tion of low-frequency and high-frequency regions in HR images,
respectively. The visual quality of HR images is predicted by con-
sidering both energy change and texture variation, which can cap-
ture the global and local distortion in HR images, respectively.
Experimental results show that the proposed RRIQA-SR method
can obtain better performance than other quality metrics, even
some FR quality metrics. In the future, we will investigate how to
use the proposed RRIQA-SR to optimize image super-resolution
algorithms.
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